U.G. 3rd Semester Examination - 2019

PHYSICS

[HONOURS]

Course Code: PHYS(H)CC-05-T

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

Answer any five questions:

 $2 \times 5 = 10$

State Dirichlet's conditions for a Fourier series.

What do you mean by the orthogonality special functions?

Evaluate $\Gamma\left(-\frac{1}{2}\right)$.

Prove the following property of the Beta function $\beta(l, m) = \beta(m, l)$.

What are the singular points of a second order linear differential equations?

What do you mean by random error?

[Turn over]

g) Write down the Parseval's formula.

Write down the relation between the Beta and Gamma function.

GROUP-B

Answer any two questions:

5×2=10

- a) i) When does a Laguerre function transform to a Laguerre Polynomials? 2
 - ii) Find the constant a_b of the Fourier series for the function f(x)=x in $0 \le x \le 2\pi$.
- (b) i) Evaluate $\int_{0}^{\pi} \sqrt{x} e^{-\sqrt{x}} dx$. 2
 - Find the regular singular points of the differential equation

$$2x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + (x^2 - 4)y = 0$$
 3

Prove the orthogonality condition of Legendre
Polynomials

$$\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = 0, \quad m \neq n$$

Write down the Bessel's differential equation of n-th order and its solution $J_n(x)$.

GROUP-C

3. Answer any two questions:

function.

10×2=20

- Find the Fourier series for the function $f(x) = e^{ax}$ for $0 < x < \pi$, where a is constant.
 - ii) Find the integral $\int_{0}^{\frac{\pi}{2}} \sin^{p}\theta \cos^{9}\theta \, d\theta$ using $\beta(m, n)$ function in terms of $\Gamma(x)$

Using Froberius method, obtain a series solution in powers of x for differential equation:

$$2x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + 3y = 0$$
 about x=0.

c) i) Find three dimensional Laplace's equation in cylindrical co-ordinates.

(3)

6

10

539/Phs.

[Turn over]

539/Phs.

(2)

ii) Prove that

$$\int_{-1}^{+1} P_n(x) (1-2xt+t^2)^{-\frac{1}{2}} dx = \frac{2t^n}{2n+1}, \text{ given,}$$

$$\int_{-1}^{+1} [P_n(x)]^2 dx = \frac{2}{2n+1} \text{ where } n \text{ is a}$$
positive integer.

 d) A tightly stretched string with fixed end points at x=0 and x=l is initially in a position given by

$$y = y_0 \sin^3 \left(\frac{\pi x}{l} \right).$$

If it is released from rest from position x (within 0 < x < l), find the displacement y(x, t).

